欢迎访问拔笔兔范文大全网!

2022高一数学寒假作业答案最新10篇

天下 分享 时间: 加入收藏 我要投稿 点赞

寒假是同学们所期待的,在寒假不能光顾着玩,因为要按时完成布置的寒假作业,遇到不会做的题目可以借鉴答案,那么寒假作业答案你知道吗?下面小编为大家收集整理了2022高一数学寒假作业答案最新10篇,欢迎阅读与借鉴!

2022高一数学寒假作业答案

高一数学寒假作业答案1

参考答案

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案 D D D A D D B C A C B C

13. ; 14. 4 ; 15. 0.4; 16. ②③

17.(1)∵A中有两个元素,∴关于 的方程 有两个不等的实数根,

∴ ,且 ,即所求的范围是 ,且 ;……6分

(2)当 时,方程为 ,∴集合A= ;

当 时,若关于 的方程 有两个相等的实数根,则A也只有一个元素,此时 ;若关于 的方程 没有实数根,则A没有元素,此时 ,

综合知此时所求的范围是 ,或 .………13分

18 解:

(1) ,得

(2) ,得

此时 ,所以方向相反

19.解:⑴由题义

整理得 ,解方程得

即 的不动点为-1和2. …………6分

⑵由 = 得

如此方程有两解,则有△=

把 看作是关于 的二次函数,则有

解得 即为所求. …………12分

20.解: (1)常数m=1…………………4分

(2)当k<0时,直线y=k与函数 的图象无交点,即方程无解;

当k=0或k 1时, 直线y=k与函数 的图象有唯一的交点,

所以方程有一解;

当0

所以方程有两解.…………………12分

21.解:(1)设 ,有 , 2

取 ,则有

是奇函数 4

(2)设 ,则 ,由条件得

在R上是减函数,在[-3,3]上也是减函数。 6

当x=-3时有最大值 ;当x=3时有最小值 ,

由 , ,

当x=-3时有最大值6;当x=3时有最小值-6. 8

(3)由 , 是奇函数

原不等式就是 10

由(2)知 在[-2,2]上是减函数

原不等式的解集是 12

22.解:(1)由数据表知 ,

(3)由于船的吃水深度为7米,船底与海底的距离不少于4.5米,故在船航行时水深 米,令 ,得 .

解得 .

取 ,则 ;取 ,则 .

故该船在1点到5点,或13点到17点能安全进出港口,而船舶要在一天之内在港口停留时间最长,就应从凌晨1点进港,下午17点离港,在港内停留的时间最长为16小时.

高一数学寒假作业答案2

对数函数及其性质一

1.(设a=log54,b=(log53)2,c=log45,则(  )

A.a

C.a

解析:选D.a=log54<1,log531,故b

2.已知f(x)=loga|x-1|在(0,1)上递减,那么f(x)在(1,+∞)上(  )

A.递增无值 B.递减无最小值

C.递增有值 D.递减有最小值

解析:选A.设y=logau,u=|x-1|.

x∈(0,1)时,u=|x-1|为减函数,∴a>1.

∴x∈(1,+∞)时,u=x-1为增函数,无值.

∴f(x)=loga(x-1)为增函数,无值.

3.已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的值与最小值之和为loga2+6,则a的值为(  )

A.12 B.14

C.2 D.4

解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.

4.函数y=log13(-x2+4x+12)的单调递减区间是________.

解析:y=log13u,u=-x2+4x+12.

令u=-x2+4x+12>0,得-2

∴x∈(-2,2]时,u=-x2+4x+12为增函数,

∴y=log13(-x2+4x+12)为减函数.

答案:(-2,2]

对数函数及其性质二

1.若loga2<1,则实数a的取值范围是(  )

A.(1,2) B.(0,1)∪(2,+∞)

C.(0,1)∪(1,2) D.(0,12)

解析:选B.当a>1时,loga22;当0

2.若loga2

A.0

C.a>b>1      D.b>a>1

解析:选B.∵loga2

∴0

3.已知函数f(x)=2log12x的值域为[-1,1],则函数f(x)的定义域是(  )

A.[22,2] B.[-1,1]

C.[12,2] D.(-∞,22]∪[2,+∞)

解析:选A.函数f(x)=2log12x在(0,+∞)上为减函数,则-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 . c o m

解得22≤x≤2.

4.若函数f(x)=ax+loga(x+1)在[0,1]上的值和最小值之和为a,则a的值为(  )

A.14 B.12

C.2 D.4

解析:选B.当a>1时,a+loga2+1=a,loga2=-1,a=12,与a>1矛盾;

当0

loga2=-1,a=12.

5.函数f(x)=loga[(a-1)x+1]在定义域上(  )

A.是增函数 B.是减函数

C.先增后减 D.先减后增

解析:选A.当a>1时,y=logat为增函数,t=(a-1)x+1为增函数,∴f(x)=loga[(a-1)x+1]为增函数;当0

∴f(x)=loga[(a-1)x+1]为增函数.

对数函数及其性质三

1.(2009年高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则(  )

A.a>b>c B.a>c>b

C.c>a>b D.c>b>a

解析:选B.∵1

∴0

∵0

又c-b=12lg e-(lg e)2=12lg e(1-2lg e)

=12lg e•lg10e2>0,∴c>b,故选B.

2.已知0

解析:∵00.

又∵0

答案:3

3.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.

解析:由图象关于原点对称可知函数为奇函数,

所以f(-x)+f(x)=0,即

log21-xa+x+log21+xa-x=0⇒log21-x2a2-x2=0=log21,

所以1-x2a2-x2=1⇒a=1(负根舍去).

答案:1

4.函数y=logax在[2,+∞)上恒有|y|>1,则a取值范围是________.

解析:若a>1,x∈[2,+∞),|y|=logax≥loga2,即loga2>1,∴11,∴a>12,∴12

答案:12

5.已知f(x)=(6-a)x-4a(x<1)logax (x≥1)是R上的增函数,求a的取值范围.

解:f(x)是R上的增函数,

则当x≥1时,y=logax是增函数,

∴a>1.

又当x<1时,函数y=(6-a)x-4a是增函数.

∴6-a>0,∴a<6.

又(6-a)×1-4a≤loga1,得a≥65.

∴65≤a<6.

综上所述,65≤a<6.

6.解下列不等式.

(1)log2(2x+3)>log2(5x-6);

(2)logx12>1.

解:(1)原不等式等价于2x+3>05x-6>02x+3>5x-6,

解得65

所以原不等式的解集为(65,3).

(2)∵logx12>1⇔log212log2x>1⇔1+1log2x<0

⇔log2x+1log2x<0⇔-1

⇔2-10⇔12

∴原不等式的解集为(12,1).

高一数学寒假作业答案3

指数与指数幂的运算一

1.将532写为根式,则正确的是(  )

A.352        B.35

C.532 D.53

解析:选D.532=53.

2.根式 1a1a(式中a>0)的分数指数幂形式为(  )

A.a-43 B.a43

C.a-34 D.a34

解析:选C.1a1a= a-1•(a-1)12= a-32=(a-32)12=a-34.

3.(a-b)2+5(a-b)5的值是(  )

A.0 B.2(a-b)

C.0或2(a-b) D.a-b

解析:选C.当a-b≥0时,

原式=a-b+a-b=2(a-b);

当a-b<0时,原式=b-a+a-b=0.

4.计算:(π)0+2-2×(214)12=________.

解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.

答案:118

对数与对数运算训练二

1.logab=1成立的条件是(  )

A.a=b           B.a=b,且b>0

C.a>0,且a≠1 D.a>0,a=b≠1

解析:选D.a>0且a≠1,b>0,a1=b.

2.若loga7b=c,则a、b、c之间满足(  )

A.b7=ac B.b=a7c

C.b=7ac D.b=c7a

解析:选B.loga7b=c⇒ac=7b,∴b=a7c.

3.如果f(ex)=x,则f(e)=(  )

A.1 B.ee

C.2e D.0

解析:选A.令ex=t(t>0),则x=lnt,∴f(t)=lnt.

∴f(e)=lne=1.

4.方程2log3x=14的解是(  )

A.x=19 B.x=x3

C.x=3 D.x=9

解析:选A.2log3x=2-2,∴log3x=-2,∴x=3-2=19.

对数与对数运算训练三

q.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为(  )

A.9 B.8

C.7 D.6

解析:选A.∵log2(log3x)=0,∴log3x=1,∴x=3.

同理y=4,z=2.∴x+y+z=9.

2.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且≠1),则logx(abc)=(  )

A.47 B.27

C.72 D.74

解析:选D.x=a2=b=c4,所以(abc)4=x7,

所以abc=x74.即logx(abc)=74.

3.若a>0,a2=49,则log23a=________.

解析:由a>0,a2=(23)2,可知a=23,

∴log23a=log2323=1.

答案:1

4.若lg(lnx)=0,则x=________.

解析:lnx=1,x=e.

答案:e

高一数学寒假作业答案4

一、选择题

1.已知f(x)=x-1x+1,则f(2)=()

A.1B.12C.13D.14

【解析】f(2)=2-12+1=13.X

【答案】C

2.下列各组函数中,表示同一个函数的是()

A.y=x-1和y=x2-1x+1

B.y=x0和y=1

C.y=x2和y=(x+1)2

D.f(x)=(x)2x和g(x)=x(x)2

【解析】A中y=x-1定义域为R,而y=x2-1x+1定义域为{x|x≠1};

B中函数y=x0定义域{x|x≠0},而y=1定义域为R;

C中两函数的解析式不同;

D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数.

【答案】D

3.用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h和时间t之间的关系是()

图2-2-1

【解析】水面的高度h随时间t的增加而增加,而且增加的速度越来越快.

【答案】B

4.函数f(x)=x-1x-2的定义域为()

A.[1,2)∪(2,+∞)B.(1,+∞)

C.[1,2]D.[1,+∞)

【解析】要使函数有意义,需

x-1≥0,x-2≠0,解得x≥1且x≠2,

所以函数的定义域是{x|x≥1且x≠2}.

【答案】A

5.函数f(x)=1x2+1(x∈R)的值域是()

A.(0,1)B.(0,1]C.[0,1)D.[0,1]

【解析】由于x∈R,所以x2+1≥1,0<1x2+1≤1,

即0

【答案】B

二、填空题

6.集合{x|-1≤x<0或1

【解析】结合区间的定义知,

用区间表示为[-1,0)∪(1,2].

【答案】[-1,0)∪(1,2]

7.函数y=31-x-1的定义域为________.

【解析】要使函数有意义,自变量x须满足

x-1≥01-x-1≠0

解得:x≥1且x≠2.

∴函数的定义域为[1,2)∪(2,+∞).

【答案】[1,2)∪(2,+∞)

8.设函数f(x)=41-x,若f(a)=2,则实数a=________.

【解析】由f(a)=2,得41-a=2,解得a=-1.

【答案】-1

三、解答题

9.已知函数f(x)=x+1x,

求:(1)函数f(x)的定义域;

(2)f(4)的值.

【解】(1)由x≥0,x≠0,得x>0,所以函数f(x)的定义域为(0,+∞).

(2)f(4)=4+14=2+14=94.

10.求下列函数的定义域:

(1)y=-x2x2-3x-2;(2)y=34x+83x-2.

【解】(1)要使y=-x2x2-3x-2有意义,则必须-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,

故所求函数的定义域为{x|x≤0,且x≠-12}.

(2)要使y=34x+83x-2有意义,

则必须3x-2>0,即x>23,

故所求函数的定义域为{x|x>23}.

11.已知f(x)=x21+x2,x∈R,

(1)计算f(a)+f(1a)的值;

(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值.

【解】(1)由于f(a)=a21+a2,f(1a)=11+a2,

所以f(a)+f(1a)=1.

(2)法一因为f(1)=121+12=12,f(2)=221+22=45,f(12)=(12)21+(12)2=15,f(3)=321+32=910,f(13)=(13)21+(13)2=110,f(4)=421+42=1617,f(14)=(14)21+(14)2=117,

所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=12+45+15+910+110+1617+117=72.

法二由(1)知,f(a)+f(1a)=1,则f(2)+f(12)=f(3)+f(13)=f(4)+f(14)=1,即[f(2)+f(12)]+[f(3)+f(13)]+[f(4)+f(14)]=3,

而f(1)=12,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72.

高一数学寒假作业答案5

1.函数f(x)=x2在[0,1]上的最小值是()

A.1B.0

C.14D.不存在

解析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知,

f(x)=x2在[0,1]上单调递增,故最小值为f(0)=0.

2.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()

A.10,6B.10,8

C.8,6D.以上都不对

解析:选A.f(x)在x∈[-1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(-1)=6.

3.函数y=-x2+2x在[1,2]上的值为()

A.1B.2

C.-1D.不存在

解析:选A.因为函数y=-x2+2x=-(x-1)2+1.对称轴为x=1,开口向下,故在[1,2]上为单调递减函数,所以ymax=-1+2=1.

4.函数y=1x-1在[2,3]上的最小值为()

A.2B.12

C.13D.-12

解析:选B.函数y=1x-1在[2,3]上为减函数,

∴ymin=13-1=12.

5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的利润为()

A.90万元B.60万元

C.120万元D.120.25万元

解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L为120万元,故选C.

6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的值为()

A.-1B.0

C.1D.2

解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.

∴函数f(x)图象的对称轴为x=2,

∴f(x)在[0,1]上单调递增.

又∵f(x)min=-2,

∴f(0)=-2,即a=-2.

f(x)max=f(1)=-1+4-2=1.

高一数学寒假作业答案6

一、选择题

1.已知f(x)=x-1x+1,则f(2)=()

A.1B.12C.13D.14

【解析】f(2)=2-12+1=13.X

【答案】C

2.下列各组函数中,表示同一个函数的是()

A.y=x-1和y=x2-1x+1

B.y=x0和y=1

C.y=x2和y=(x+1)2

D.f(x)=x2x和g(x)=xx2

【解析】A中y=x-1定义域为R,而y=x2-1x+1定义域为{x|x≠1};

B中函数y=x0定义域{x|x≠0},而y=1定义域为R;

C中两函数的解析式不同;

D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数.

【答案】D

3.用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h和时间t之间的关系是()

图2-2-1

【解析】水面的高度h随时间t的增加而增加,而且增加的速度越来越快.

【答案】B

4.函数f(x)=x-1x-2的定义域为()

A.[1,2)∪(2,+∞)B.(1,+∞)

C.[1,2]D.[1,+∞)

【解析】要使函数有意义,需

x-1≥0,x-2≠0,解得x≥1且x≠2,

所以函数的定义域是{x|x≥1且x≠2}.

【答案】A

5.函数f(x)=1x2+1(x∈R)的值域是()

A.(0,1)B.(0,1]C.[0,1)D.[0,1]

【解析】由于x∈R,所以x2+1≥1,0<1x2+1≤1,

即0

【答案】B

二、填空题

6.集合{x|-1≤x<0或1

【解析】结合区间的定义知,

用区间表示为[-1,0)∪(1,2].

【答案】[-1,0)∪(1,2]

7.函数y=31-x-1的定义域为________.

【解析】要使函数有意义,自变量x须满足

x-1≥01-x-1≠0

解得:x≥1且x≠2.

∴函数的定义域为[1,2)∪(2,+∞).

【答案】[1,2)∪(2,+∞)

8.设函数f(x)=41-x,若f(a)=2,则实数a=________.

【解析】由f(a)=2,得41-a=2,解得a=-1.

【答案】-1

三、解答题

9.已知函数f(x)=x+1x,

求:(1)函数f(x)的定义域;

(2)f(4)的值.

【解】(1)由x≥0,x≠0,得x>0,所以函数f(x)的定义域为(0,+∞).

(2)f(4)=4+14=2+14=94.

10.求下列函数的定义域:

(1)y=-x2x2-3x-2;(2)y=34x+83x-2.

【解】(1)要使y=-x2x2-3x-2有意义,则必须-x≥0,2x2-3x-2≠0,解得x≤0且x≠-12,

故所求函数的定义域为{x|x≤0,且x≠-12}.

(2)要使y=34x+83x-2有意义,

则必须3x-2>0,即x>23,

故所求函数的定义域为{x|x>23}.

11.已知f(x)=x21+x2,x∈R,

(1)计算f(a)+f(1a)的值;

(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值.

【解】(1)由于f(a)=a21+a2,f(1a)=11+a2,

所以f(a)+f(1a)=1.

(2)法一因为f(1)=121+12=12,f(2)=221+22=45,f(12)=1221+122=15,f(3)=321+32=910,f(13)=1321+132=110,f(4)=421+42=1617,f(14)=1421+142=117,

所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=12+45+15+910+110+1617+117=72.

法二由(1)知,f(a)+f(1a)=1,则f(2)+f(12)=f(3)+f(13)=f(4)+f(14)=1,即[f(2)+f(12)]+[f(3)+f(13)]+[f(4)+f(14)]=3,

而f(1)=12,所以f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72.

高一数学寒假作业答案7

一、选择题(每小题4分,共16分)

1.(2014•济南高一检测)若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径长r的取值范围是()

A.(4,6)B.[4,6)

C.(4,6]D.[4,6]

【解析】选A.圆心(3,-5)到直线的距离为d==5,

由图形知4

2.(2013•广东高考)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()

A.x+y-=0B.x+y+1=0

C.x+y-1=0D.x+y+=0

【解析】选A.由题意知直线方程可设为x+y-c=0(c>0),则圆心到直线的距离等于半径1,即=1,c=,故所求方程为x+y-=0.

3.若曲线x2+y2+2x-6y+1=0上相异两点P,Q关于直线kx+2y-4=0对称,则k的值为()

A.1B.-1C.D.2

【解析】选D.由条件知直线kx+2y-4=0是线段PQ的中垂线,所以直线过圆心(-1,3),所以k=2.

4.(2014•天津高一检测)由直线y=x+1上的一点向(x-3)2+y2=1引切线,则切线长的最小值为()

A.1B.2C.D.3

【解题指南】切线长的平方等于直线上的点到圆心的距离的平方减去半径的平方,所以当直线上的点到圆心的距离最小时,切线长最小.

【解析】选C.设P(x0,y0)为直线y=x+1上一点,圆心C(3,0)到P点的距离为d,切线长为l,则l=,当d最小时,l最小,当PC垂直于直线y=x+1时,d最小,此时d=2,

所以lmin==.

二、填空题(每小题5分,共10分)

5.(2014•山东高考)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得的弦的长为2,则圆C的标准方程为________.

【解题指南】本题考查了直线与圆的位置关系,可利用圆心到直线的距离、弦长一半、半径构成直角三角形求解.

【解析】设圆心,半径为a.

由勾股定理得+=a2,解得a=2.

所以圆心为,半径为2,

所以圆C的标准方程为+=4.

答案:+=4.

6.已知圆C:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆C挡住,则a的取值范围是____________.

【解析】由题意可得∠TAC=30°,

BH=AHtan30°=.

所以,a的取值范围是∪.

答案:∪

三、解答题(每小题12分,共24分)

7.(2013•江苏高考)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.

(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程.

(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

【解题指南】(1)先利用题设中的条件确定圆心坐标,再利用直线与圆相切的几何条件找出等量关系,求出直线的斜率.(2)利用MA=2MO确定点M的轨迹方程,再利用题设中条件分析出两圆的位置关系,求出a的取值范围.

【解析】(1)由题设知,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,

由题意得,=1,解得k=0或-,

故所求切线方程为y=3或3x+4y-12=0.

(2)因为圆心C在直线y=2x-4上,设C点坐标为(a,2a-4),所以圆C的方程为

(x-a)2+[y-2(a-2)]2=1.

设点M(x,y),因为MA=2MO,

所以=2,

化简得x2+y2+2y-3=0,即x2+(y+1)2=4,

所以点M在以D(0,-1)为圆心,2为半径的圆上.

由题意知,点M(x,y)在圆C上,所以圆C与圆D有公共点,

则2-1≤CD≤2+1,

即1≤≤3.

由5a2-12a+8≥0,得a∈R;

由5a2-12a≤0,得0≤a≤.

所以圆心C的横坐标a的取值范围为.

8.已知圆的圆心在x轴上,圆心横坐标为整数,半径为3.圆与直线4x+3y-1=0相切.

(1)求圆的方程.

(2)过点P(2,3)的直线l交圆于A,B两点,且|AB|=2.求直线l的方程.

【解析】(1)设圆心为M(m,0),m∈Z,

因为圆与直线4x+3y-1=0相切,

所以=3,即|4m-1|=15,

又因为m∈Z,所以m=4.

所以圆的方程为(x-4)2+y2=9.

(2)①当斜率k不存在时,直线为x=2,此时A(2,),B(2,-),|AB|=2,满足条件.

②当斜率k存在时,设直线为y-3=k(x-2)即kx-y+3-2k=0,

设圆心(4,0)到直线l的距离为d,

所以d==2.

所以d==2,解得k=-,

所以直线方程为5x+12y-46=0.

综上,直线方程为x=2或5x+12y-46=0.

【变式训练】(2014•大连高一检测)设半径为5的圆C满足条件:①截y轴所得弦长为6.②圆心在第一象限,并且到直线l:x+2y=0的距离为.

(1)求这个圆的方程.

(2)求经过P(-1,0)与圆C相切的直线方程.

【解析】(1)由题设圆心C(a,b)(a>0,b>0),半径r=5,

因为截y轴弦长为6,

所以a2+9=25,因为a>0,所以a=4.

由圆心C到直线l:x+2y=0的距离为,

所以d==,

因为b>0,

所以b=1,

所以圆的方程为(x-4)2+(y-1)2=25.

(2)①斜率存在时,设切线方程y=k(x+1),

由圆心C到直线y=k(x+1)的距离=5.

所以k=-,

所以切线方程:12x+5y+12=0.

②斜率不存在时,方程x=-1,也满足题意,

由①②可知切线方程为12x+5y+12=0或x=-1.

高一数学寒假作业答案8

1.函数f(x)=x2在[0,1]上的最小值是()

A.1B.0

C.14D.不存在

解析:选B.由函数f(x)=x2在[0,1]上的图象(图略)知,

f(x)=x2在[0,1]上单调递增,故最小值为f(0)=0.

2.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()

A.10,6B.10,8

C.8,6D.以上都不对

解析:选A.f(x)在x∈[-1,2]上为增函数,f(x)max=f(2)=10,f(x)min=f(-1)=6.

3.函数y=-x2+2x在[1,2]上的值为()

A.1B.2

C.-1D.不存在

解析:选A.因为函数y=-x2+2x=-(x-1)2+1.对称轴为x=1,开口向下,故在[1,2]上为单调递减函数,所以ymax=-1+2=1.

4.函数y=1x-1在[2,3]上的最小值为()

A.2B.12

C.13D.-12

解析:选B.函数y=1x-1在[2,3]上为减函数,

∴ymin=13-1=12.

5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的利润为()

A.90万元B.60万元

C.120万元D.120.25万元

解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L为120万元,故选C.

6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的值为()

A.-1B.0

C.1D.2

解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.

∴函数f(x)图象的对称轴为x=2,

∴f(x)在[0,1]上单调递增.

又∵f(x)min=-2,

∴f(0)=-2,即a=-2.

f(x)max=f(1)=-1+4-2=1.

高一数学寒假作业答案9

1.函数f(x)=x的奇偶性为()

A.奇函数B.偶函数

C.既是奇函数又是偶函数D.非奇非偶函数

解析:选D.定义域为{x|x≥0},不关于原点对称.

2.下列函数为偶函数的是()

A.f(x)=|x|+xB.f(x)=x2+1x

C.f(x)=x2+xD.f(x)=|x|x2

解析:选D.只有D符合偶函数定义.

3.设f(x)是R上的任意函数,则下列叙述正确的是()

A.f(x)f(-x)是奇函数

B.f(x)|f(-x)|是奇函数

C.f(x)-f(-x)是偶函数

D.f(x)+f(-x)是偶函数

解析:选D.设F(x)=f(x)f(-x)

则F(-x)=F(x)为偶函数.

设G(x)=f(x)|f(-x)|,

则G(-x)=f(-x)|f(x)|.

∴G(x)与G(-x)关系不定.

设M(x)=f(x)-f(-x),

∴M(-x)=f(-x)-f(x)=-M(x)为奇函数.

设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).

N(x)为偶函数.

4.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的值为8,最小值为-1,则2f(-6)+f(-3)的值为()

A.10B.-10

C.-15D.15

解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.

5.f(x)=x3+1x的图象关于()

A.原点对称B.y轴对称

C.y=x对称D.y=-x对称

解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.

6.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.

解析:∵f(x)是[3-a,5]上的奇函数,

∴区间[3-a,5]关于原点对称,

∴3-a=-5,a=8.

答案:8

7.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx()

A.是奇函数

B.是偶函数

C.既是奇函数又是偶函数

D.是非奇非偶函数

解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.

8.奇函数y=f(x)(x∈R)的图象点()

A.(a,f(-a))B.(-a,f(a))

C.(-a,-f(a))D.(a,f(1a))

解析:选C.∵f(x)是奇函数,

∴f(-a)=-f(a),

即自变量取-a时,函数值为-f(a),

故图象点(-a,-f(a)).

9.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时()

A.f(x)≤2B.f(x)≥2

C.f(x)≤-2D.f(x)∈R

解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.

高一数学寒假作业答案10

1.{x|x<=2或x>=10}{x|x<3或x>=7}{x|2=10}

C B D

2.a=1

m=1

{0,-1/3,-1/2}

第二页

1.(3/2,+∞)

B

B

2.01

C

C

第三页

1.-14

B

B

2.Mn

C

A

第四页

1.略

变式1:-1/5

变式2:不会

变式3:D

2. (1)略

(2)偶函数

变式1: a=-1 b=0

变式2: C

变式3: √2/2

第五页

1.图象略

减 [-3,-2), [0,1), [3,6) 增 [-2,0), [1,3)

Fmax=f(3)=4 Fmin=f(6)=-5

增(-∞, -1],(0,1] 减(1,+∞)

①②

2. (1)b^2-4ac<0

a>0

c>0

(2)b^2-4ac<0

a<0

c<0

变式1

第六页

1. B

2. A

3. ③

4. a^3×π/2

5. (1)过N在平面PDC内作NQ垂直于PD,连接AQ

略证明

(2)s=1×1×1×1/3=1/3

6.Ⅰ 由题可得D(0,1)

由两点式得 3x+y-=0

Ⅱ BC所在直线方程为 x-y+1=0

A到BC距离为 2√2

第七页

1.C

2.A

3.A

4.D

5.4-4/3π

6.∵CF:CB=CE:CA=1:2

∴E(0,3/2) F(2,7/2)

∴由两点式得L方程为 x-y+3/2=0

第八页

1.A

2.不会

3.D

4.0或1

5.S=a×b×√2/2×3=3√2/2ab

6.略

第九页 第十页 均为课本必修2上得例题(略)

2022高一数学寒假作业答案最新10篇相关文章:

★ 初一数学寒假作业答案最新版

★ 最新版七年级数学寒假作业答案参考借鉴

★ 最新的初二数学寒假作业全部答案

★ 七年级数学寒假作业答案参考最新

★ 初一上学期数学寒假作业答案参考大全

★ 最新的七年级寒假作业答案大全

★ 七年级上学期数学寒假作业答案大全参考借鉴

★ 最新七年级上学期各科的寒假作业答案大全


★ 最新的七年级上学期数学寒假作业答案参考

社区团购 石家庄论坛 书包网 电地暖 信息流广告 网络推广 周易 易经 代理招生 二手车 网络营销 招生代理 旅游攻略 非物质文化遗产 查字典 精雕图 戏曲下载 抖音代运营 易学网 互联网资讯 成语 成语故事 诗词 工商注册 注册公司 抖音带货 云南旅游网 网络游戏 代理记账 短视频运营 在线题库 国学网 知识产权 抖音运营 雕龙客 雕塑 奇石 散文 自学教程 常用文书 河北生活网 好书推荐 游戏攻略 心理测试 石家庄人才网 考研真题 汉语知识 心理咨询 手游安卓版下载 兴趣爱好 网络知识 十大品牌排行榜 商标交易 单机游戏下载 短视频代运营 宝宝起名 范文网 电商设计 免费发布信息 服装服饰 律师咨询 搜救犬 Chat GPT中文版 经典范文 优质范文 工作总结 二手车估价 实用范文 爱采购代运营 古诗词 衡水人才网 石家庄点痣 养花 名酒回收 石家庄代理记账 女士发型 搜搜作文 石家庄人才网 铜雕 词典 围棋 chatGPT 读后感 玄机派 企业服务 法律咨询 chatGPT国内版 chatGPT官网 励志名言 河北代理记账公司 文玩 朋友圈文案 语料库 游戏推荐 男士发型 高考作文 PS修图 儿童文学 买车咨询 工作计划 礼品厂 舟舟培训 IT教程 手机游戏推荐排行榜 暖通,电地暖, 女性健康 苗木供应 ps素材库 短视频培训 优秀个人博客 包装网 创业赚钱 养生 民间借贷律师 绿色软件 安卓手机游戏 手机软件下载 手机游戏下载 单机游戏大全 免费软件下载 网赚 手游下载 游戏盒子 职业培训 资格考试 成语大全 英语培训 艺术培训 少儿培训 苗木网 雕塑网 好玩的手机游戏推荐 汉语词典 中国机械网 美文欣赏 红楼梦 道德经 标准件 网站转让 鲜花
1908
领取福利

微信扫码领取福利

微信扫码分享